Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 4(3): txaa084, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32705075

RESUMO

The objective of this study was to determine whether rotational grazing generates horse, pasture, or cost benefits over continuous grazing. The study established two replicates (1.57 ha each) of rotational (R; four grazing sections and a stress lot per replicate, where horses were fed a moderate quality grass hay at 2% of body weight when not grazing) and continuous (C) grazing systems (treatments). Twelve Standardbred mares were grazed for an overall stocking rate of 0.52 ha/horse (n = 3 in each pasture). Recommended management practices for each grazing system were followed for 27 mo including three grazing seasons. Samples were collected monthly between 0800 and 1000. Results were analyzed in SAS (V9.4) using mixed model repeated-measures analysis of covariance, chi-square tests of association, and two-sample t-tests. Alpha level was set at P < 0.05. The C horses were maintained on pasture for 100% of the study duration (844 d; August 1, 2014 to November 22, 2016), while R horses had access to pasture for approximately half of this time (408 ± 33 d). The average length of grazing bout per rotational grazing section during the grazing season increased numerically each year from 7.88 ± 0.76 d in 2014, 10.0 ± 0.61 d in 2015, and 10.9 ± 0.80 d in 2016. Average horse body condition score (BCS) and body fat differed by treatment, with C horses (BCS 6.3 ± 0.05, 17.9 ± 0.15% body fat) greater than R horses (BCS 5.9 ± 0.05, 16.8 ± 0.15% body fat). Both sward height and herbage mass were greater in R (11.8 ± 0.1 cm tall; 1,513 ± 41 kg/ha) than C pastures (6.9 ± 0.1 cm tall; 781 ± 35 kg/ha). The R pastures had higher proportions of vegetative and total cover, planted grasses (tall fescue and orchardgrass), and weeds but lower proportions of grass weeds (nonplanted grasses) and other (rocks, litter, bare ground, etc.) as compared with C pastures. Digestible energy, acid detergent fiber, and calcium were higher in R vs. C pastures; however, crude protein was lower in R vs. C pastures. There were no significant differences between treatments for average monthly amount of hay fed (C, 597 ± 34.1 vs. R, 659 ± 34.1 kg) or average monthly pasture maintenance cost (C, $17.55 ± 3.14 vs. R, $20.50 ± 3.14). This study is one of few replicated experiments comparing the effects of rotational and continuous grazing for horses on pasture quality, horse condition, and production costs. The results here support the recommendation of rotational grazing for production, environmental, and ecological purposes.

2.
J Equine Vet Sci ; 88: 102971, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303328

RESUMO

Field studies characterizing equine grazing activity primarily rely on observational protocols, limiting the quantity and accuracy of collected data. The objectives of this study were to validate an automated chew sensor technology, the EquiWatch System (EWS), for detecting grazing behaviors and to demonstrate potential applications of the EWS in equine grazing research. Eight mature standardbred mares were used in this study. EquiWatch System validation was completed in two phases: grazing time was evaluated in experiment 1 and chew counts in experiment 2. The correlation between visual observations and system-recorded grazing time was high (concordance correlation coefficient [CCC] = 0.997). There was also a high agreement between the sum of manually counted bites and chews and total chew counts reported by the EWS (CCC = 0.979). Following validation, a pilot study was conducted using the EWS to assess feeding behaviors of horses with unrestricted pasture access (PAS) versus horses offered ad libitum hay (HAY). Horses spent more time engaged in feeding behavior on PAS (14.79 ± 0.48 hr/d) than HAY (11.98 ± 0.48 hr/d; P < .0001). Chewing rate also differed by forage (PAS 83.92 ± 1.61; HAY 68.50 ± 1.61 chews/min; P < .0001). However, although the magnitude of these behavioral parameters was influenced by treatment, the underlying 24-hour patterns were largely preserved regardless of forage type. These results demonstrate that the EWS can generate data necessary for characterizing feeding behavior in horses. Future studies implementing this tool could provide a greater understanding of biological, environmental, and nutritive factors driving grazing behavior in horses.


Assuntos
Comportamento Alimentar , Mastigação , Animais , Feminino , Cavalos , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...